博客
关于我
《机器学习与实践》读书笔记及代码(三)
阅读量:146 次
发布时间:2019-02-27

本文共 2260 字,大约阅读时间需要 7 分钟。

#波士顿地区,用线性回归,去预测房价from sklearn.datasets import load_bostonboston = load_boston()print boston.DESCRfrom sklearn.cross_validation import train_test_splitimport numpy as npX = boston.datay = boston.target#如果没有这里的话,下一步会报错# X.shapeX_train, X_test, y_train, y_test = train_test_split(X,y,random_state=33,test_size = 0.25)print"The max target value is:",np.max(boston.target)print"The min target value is:",np.min(boston.target)print"The average target value is:",np.mean(boston.target)# print X_train.shape# print y_train.shape#从上面当中,显然发现预测目标房价之间,差距很大,因此,应该先标准化处理from sklearn.preprocessing import StandardScalerss_X = StandardScaler()#分别对训练和测试数据的特征,以及目标值进行标准化处理X_train = ss_X.fit_transform(X_train)X_test = ss_X.transform(X_test)ss_y = StandardScaler()#这里一定要有reshape(-1,1)这样一个过程,否则会报错,y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))#此处使用十分简单的LinearRegression和SGDRegression分别对美国波士顿地区的房价进行预测from sklearn.linear_model import LinearRegressionlr = LinearRegression()lr.fit(X_train,y_train)lr_y_predict = lr.predict(X_test)from sklearn.linear_model import SGDRegressorsgdr = SGDRegressor()sgdr.fit(X_train,y_train)sgdr_y_predict = sgdr.predict(X_test)#使用LinearRegression模型自带的评估模块。并输出结果print 'The value of default measurement of LinearRegression is:',lr.score(X_test,y_test)from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_errorprint 'The value of R-squared of LinearRegression is:',r2_score(y_test,lr_y_predict)print 'The mean squared error of LinearRegression is:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(lr_y_predict))print 'The mean absolute error of LinearRegression is:',mean_absolute_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(lr_y_predict))#使用SGDRegression模型自带的评估模块。并输出结果print 'The value of default measurement of SGDRegressor is:',sgdr.score(X_test,y_test)print 'The value of R-squared of LinearRegression is:',r2_score(y_test,sgdr_y_predict)print 'The mean squared error of LinearRegression is:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(sgdr_y_predict))print 'The mean absolute error of LinearRegression is:',mean_absolute_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(sgdr_y_predict))

支持向量机(回归)

 

转载地址:http://ixjb.baihongyu.com/

你可能感兴趣的文章
NAT-DDNS内网穿透技术,解决动态域名解析难题
查看>>
natapp搭建外网服务器
查看>>
NativePHP:使用PHP构建跨平台桌面应用的新框架
查看>>
nativescript(angular2)——ListView组件
查看>>
NativeWindow_01
查看>>
Native方式运行Fabric(非Docker方式)
查看>>
Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
查看>>
Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
查看>>
Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
nat打洞原理和实现
查看>>
NAT技术
查看>>
NAT模式/路由模式/全路由模式 (转)
查看>>
NAT模式下虚拟机centOs和主机ping不通解决方法
查看>>
NAT的两种模式SNAT和DNAT,到底有啥区别?
查看>>
NAT的全然分析及其UDP穿透的全然解决方式
查看>>
NAT类型与NAT模型详解
查看>>
NAT网络地址转换配置实战
查看>>
NAT网络地址转换配置详解
查看>>